Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10229248 | Biomaterials | 2012 | 8 Pages |
Abstract
It is still a great challenge to apply therapeutic concentration of anti-cancer drugs to the tumor site with low system toxicity. An in situ administration strategy was applied to reverse the aerobic glycolysis of tumor in vivo for the first time. Controlled release of therapeutic concentration of dichloroacetate (DCA) from polylactide (PLA) electrospun mats covering the solid tumor locally was designed to suppress the cervical carcinoma in vivo. A dramatic decrease in the volume and weight of tumors was observed for 19 days in tumor-bearing mice, and a totally 96% of the tumor suppression degree was obtained even the initial tumor volume was around 200 mm3. Half of the mice recovered in less than 3 weeks. Necrosis was examined rather than apoptosis on the tumor cells as the main process of cell death induced by the DCA-loaded electrospun mats. A proposed necroptosis mechanism was presented to explain the signal pathways that were induced by the metabolic remodeling of DCA. It provided support for this strategy that target the bio-energy metabolism of the cervical carcinoma locally is a quick and effective pathway to cure the advanced-carcinoma of cervical.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Daxing Liu, Shi Liu, Xiabin Jing, Xiaoyuan Li, Wenliang Li, Yubin Huang,