Article ID Journal Published Year Pages File Type
10229262 Biomaterials 2012 12 Pages PDF
Abstract
The long-term fate of fluorescent non-porous FITC-SiO2 nanoparticles of various sizes (10-200 nm) and charge is studied in the presence of human dermal fibroblasts. Particle aggregates are formed in the culture medium and uptaken, at least partially, by macropinocytosis. The smallest particles have a strong impact on cell viability and genotoxic effects can be observed for negatively-charged colloids 10 nm in size. Largest particles do not impact on cellular activity and can be monitored in cellulo via fluorescence and transmission electron microscopy studies over two weeks. These observations reveal a significant decrease in the size of silica particles located in endocytic vesicles. The dissolution process is confirmed by monitoring the cell culture medium that contains both colloidal and soluble silica species. Such dissolution can be explained on the sole basis of silica solubility and has great implication for the use of non-porous silica particles as intra-cellular drug release systems.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , ,