Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10229352 | Biomaterials | 2013 | 8 Pages |
Abstract
The fragment of viral protein R (Vpr), Vpr13-33, plays an important role in regulating nuclear importing of HIV through ion channel formation with a leucine-zipper-like α-helical conformation. Herein we report an approach to reduce cytotoxicity of Vpr13-33 by graphene oxide induced conformation change and aggregation. Preferential adsorption of Vpr13-33 on graphene oxide accompanied by conformation change from α-helix to β-sheet structures has been observed by using atomic force microscopy (AFM) and circular dichroism (CD). The submolecular structures of the Vpr13-33 peptide assembly on graphite surface have been identified by using scanning tunneling microscopy (STM), which confirms the β-sheet structures of Vpr13-33 on graphene oxide surface. The reduced cytotoxicity of Vpr13-33 to neuroblastoma cells and T cells are detected by MTT assay, which could be associated with the conformation change and stimulated aggregation of Vpr13-33 upon addition of graphene oxide through hydrophobic interaction. Furthermore, fluorescent leakage assay by using large unilamellar vesicles (LUVs) indicated that the GO reduced Vpr13-33-induced cytotoxicity could be associated with the inhibited “pore forming” function of Vpr13-33 by conformation change and aggregation.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Min Zhang, Xiaobo Mao, Chenxuan Wang, Wenfeng Zeng, Chunling Zhang, Zhongjun Li, Ying Fang, Yanlian Yang, Wei Liang, Chen Wang,