Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10229356 | Biomaterials | 2013 | 11 Pages |
Abstract
We report a facile approach to fabricating electrospun drug-loaded organic/inorganic hybrid nanofibrous system for antibacterial applications. In this study, nano-hydroxyapatite (n-HA) particles loaded with a model drug, amoxicillin (AMX) were dispersed into poly(lactic-co-glycolic acid) (PLGA) solution to form electrospun hybrid nanofibers. The loading of AMX onto n-HA surfaces (AMX/n-HA) and the formation of AMX/n-HA/PLGA composite nanofibers were characterized using different techniques. We show that AMX can be successfully adsorbed onto the n-HA surface and the formed AMX/n-HA/PLGA composite nanofibers have a uniform and smooth morphology with improved mechanical durability. Cell viability assay and cell morphology observation reveal that the formed AMX/n-HA/PLGA composite nanofibers are cytocompatible. Importantly, the loaded AMX within the n-HA/PLGA hybrid nanofibers shows a sustained release profile and a non-compromised activity to inhibit the growth of a model bacterium, Staphylococcus aureus. With the significantly reduced burst-release profile, good cytocompatibility, improved mechanical durability, as well as the remained antibacterial activity, the developed AMX/n-HA/PLGA composite nanofibers should find various potential applications in the fields of tissue engineering and pharmaceutical science.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Fuyin Zheng, Shige Wang, Shihui Wen, Mingwu Shen, Meifang Zhu, Xiangyang Shi,