Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10229640 | Biomaterials | 2011 | 15 Pages |
Abstract
The objective of this study is to evaluate the activity of gelatin hydrogels incorporating combined stromal cell-derived factor-1 (SDF-1) and bone morphogenetic protein-2 (BMP-2) on the in vivo bone regeneration at an ulna critical-sized defect and subcutaneous site of rats, and compared with that of those incorporating either SDF-1 or BMP-2. The similar release profile of SDF-1 and BMP-2 from the hydrogels was observed with or without the combination of BMP-2 and SDF-1, respectively. An enhanced bone regeneration by the hydrogels incorporating combined SDF-1 and BMP-2 was observed. In addition, the implantation of hydrogels incorporating combined SDF-1 and BMP-2 enhanced the expression level of CXC chemokine cell-surface receptor-4 (Cxcr4), Runt-related factor-2 (Runx2), and Osteocalcin genes. The experiments with green fluorescent protein (GFP)-positive Chimeric mice revealed that the recruitment of bone marrow-derived cells was promoted and a vascular-like structure together with strong accumulation of CD31- and CD34-positive cells was observed at the site of hydrogels incorporating combined SDF-1 and BMP-2 implanted. In addition, a large fraction of CD29- and CD44-positive non-hematopoietic cells was detected. It is concluded that the combined release of SDF-1 and BMP-2 enhanced the recruitment of osteogenic cells and angiogenesis, resulting in the synergistic effect on bone regeneration.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Juthamas Ratanavaraporn, Hiroyuki Furuya, Hiroshi Kohara, Yasuhiko Tabata,