Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10229771 | Biomaterials | 2011 | 8 Pages |
Abstract
Theranostic systems have been explored extensively for a diagnostic therapy in the forms of polymer conjugates, implantable devices, and inorganic nanoparticles. In this work, we report theranostic systems in situ assembled by host-guest chemistry responding to a request. As a model theranostic system on demand, cucurbit[6]uril-conjugated hyaluronate (CB[6]-HA) was synthesized and decorated with FITC-spermidine (spmd) and/or formyl peptide receptor like 1 (FPRL1) specific peptide-spmd by simple mixing in aqueous solution. The resulting (FITC-spmd and/or peptide-spmd)@CB[6]-HA was successfully applied to the bioimaging of its target-specific delivery to B16F1 cells with HA receptors and its therapeutic signal transduction with elevated Ca2+ and phosphor-extracellular signal-regulated kinase (pERK) levels in FPRL1-expressing human breast adenocarcinoma (FPRL1/MCF-7) cells. Finally, we could confirm in vitro and in vivo stability of the highly specific host-guest interaction. The on-demand theranostic platform technology using host-guest chemistry can be exploited for various bioimaging, biosensing, drug delivery, and tissue engineering applications.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Hyuntae Jung, Kyeng Min Park, Jeong-A. Yang, Eun Ju Oh, Don-Wook Lee, Kitae Park, Sung Ho Ryu, Sei Kwang Hahn, Kimoon Kim,