Article ID Journal Published Year Pages File Type
10229831 Biomaterials 2012 15 Pages PDF
Abstract
Glioblastomas (GBMs) are the most common primary brain tumors with poor prognosis. CD133 has been considered a putative marker of cancer stem cells (CSCs) in malignant cancers, including GBMs. MicroRNAs (miRNAs), highly conserved small RNA molecules, may target oncogenes and have potential as a therapeutic strategy against cancer. However, the role of miRNAs in GBM-associated CSCs remains mostly unclear. In this study, our miRNA/mRNA-microarray and RT-PCR analysis showed that the expression of miR145 (a tumor-suppressive miRNA) is inversely correlated with the levels of Oct4 and Sox2 in GBM-CD133+ cells and malignant glioma specimens. We demonstrated that miR145 negatively regulates GBM tumorigenesis by targeting Oct4 and Sox2 in GBM-CD133+. Using polyurethane-short branch polyethylenimine (PU-PEI) as a therapeutic-delivery vehicle, PU-PEI-mediated miR145 delivery to GBM-CD133+ significantly inhibited their tumorigenic and CSC-like abilities and facilitated their differentiation into CD133−-non-CSCs. Furthermore, PU-PEI-miR145-treated GBM-CD133+ effectively suppressed the expression of drug-resistance and anti-apoptotic genes and increased the sensitivity of the cells to radiation and temozolomide. Finally, the in vivo delivery of PU-PEI-miR145 alone significantly suppressed tumorigenesis with stemness, and synergistically improved the survival rate when used in combination with radiotherapy and temozolomide in orthotopic GBM-CD133+-transplanted immunocompromised mice. Therefore, PU-PEI-miR145 is a novel therapeutic approach for malignant brain tumors.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , , , , ,