Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10229961 | Biomaterials | 2011 | 11 Pages |
Abstract
Diblock copolymers (PEI-PCL) of poly(ε-caprolactone) (PCL) and linear poly(ethylene imine) (PEI) were synthesized and assembled to biodegradable nano-carriers for co-delivery of BCL-2 siRNA and doxorubicin (DOX). Folic acid as a tumor-targeting ligand was conjugated to the polyanion, poly(ethylene glycol)-block-poly(glutamic acid) (FA-PEG-PGA). Driven by the electrostatic interaction, FA-PEG-PGA was coated onto the surface of the cationic PEI-PCL nanoparticles pre-loaded with siRNA and DOX, potentiating a ligand-directed delivery to human hepatic cancer cells Bel-7402. At certain N/P and C/N ratios (N/P: PEI-PCL nitrogen to siRNA phosphate; C/N: FA-PEG-PGA carboxyl to PEI-PCL amine), the nanoparticles exhibited not only high transfection efficiency but also ideally controlled release of drug. Compared to non-specific delivery, the folate-targeted delivery of BCL-2 siRNA resulted in more significant gene suppression at both the BCL-2 mRNA and protein expression levels, inducing cancer cell apoptosis and improving the therapeutic efficacy of the co-administered DOX. Herein we demonstrated that co-loading siRNA and small molecular drug in a multifunctional hierarchical nano-assembly enabled simultaneously delivering siRNA and drug into the same cancer cells, yielding synergistic effect of RNA interference and chemotherapy in cancer.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Nuo Cao, Du Cheng, Seyin Zou, Hua Ai, Jinming Gao, Xintao Shuai,