Article ID Journal Published Year Pages File Type
10230325 Biomaterials 2005 10 Pages PDF
Abstract
To improve the surface biocompatibility, asymmetric membranes fabricated from poly(acrylonitrile-co-maleic acid)s (PANCMAs) synthesized by water-phase precipitation copolymerization were tethered (or immobilized) with poly(ethylene glycol)s (PEGs) by esterification reaction. Chemical changes on the membrane surface were characterized by Fourier transform infrared spectroscopy and elemental analysis to confirm the immobilization of PEG onto the PANCMA membranes. The hydrophilicity and blood compatibility of the PEG-tethered PANCMA membrane were investigated by water contact angle, water absorption, protein adsorption, plasma platelets adhesion and cell adhesion measurements, and the results were compared with the corresponding PANCMA membranes. It was found that, after the tethering of PEG, the hydrophilicity of the membrane can be improved significantly, and the protein adsorption, platelets adhesion and macrophage attachment on the membrane surface are obviously suppressed. Furthermore, not only the content of maleic acid in PANCMA, which influences the tethering density of PEG, but also the molecular weight of PEG has great effect on the surface modification of PANCMA membranes for biocompatibility.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,