Article ID Journal Published Year Pages File Type
10233201 Enzyme and Microbial Technology 2005 7 Pages PDF
Abstract
A novel, ultra-large xylanolytic complex (xylanosome) from Streptomyces olivaceoviridis E-86 was purified to homogeneity by ammonium sulfate precipitation and Sephacryl S-300 gel filtration chromatography. The purified xylanosome appeared as a single protein band on the non-denaturing (native) polyacrylamide gel electrophoresis (PAGE) gel with a molecular mass of approximately 1200 kDa. The optimal temperature and pH for xylanase activity was 60 °C and pH 6.0, respectively. The xylanase activity was stable within pH 4.1-10.3. It was stable up to 60 °C at pH 6.0. The xylanosome was highly specific towards oat-spelt xylan, and showed low activity towards corncob powder, but exhibited very low activity towards lichenan, CMC and p-nitrophenyl derivatives. Apparent Km values of the xylansosome for birchwood, beechwood, soluble oat-spelt and insoluble oat-spelt xylans were 2.5, 3.6, 1.7 and 4.9 mg ml−1, respectively. The main hydrolysis products of birchwood xylan were xylotriose, xylobiose and xylose. Analysis of the products from wheat arabinoxylan degradation by xylanosome confirmed that the enzyme had endoxylanase and debranching activities, with xylotriose, xylobiose, xylose and arabinose as the main degradation products. These unique properties of the purified xylanosome from Streptomyces olivaceoviridis E-86 make this enzymatic complex attractive for biotechnological applications.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , ,