Article ID Journal Published Year Pages File Type
10234981 New Biotechnology 2014 14 Pages PDF
Abstract
Microarray experiments revealed varying transcriptional responses depending on the enzymatic activity, subcellular localization and physiological role of the membrane proteins. While an alternative oxidase evoked primarily a response within the mitochondria, the overexpression of transporters entering the secretory pathway had a wide effect on lipid metabolism and induced the upregulation of the UPR (unfolded protein response) transcription factor Hac1p. Coexpression of P. pastoris endogenous HAC1 increased the levels of ER-resident membrane proteins 1.5- to 2.1-fold. Subsequent transcriptome analysis of HAC1 coexpression revealed an upregulation of the folding machinery correlating with an expansion of the ER membrane capacity, thus boosting membrane protein production. Hence, our study has helped to elucidate the cellular response of P. pastoris to the expression of different classes of membrane proteins and led specifically to new insights into the effect of PpHac1p on membrane proteins entering the secretory pathway.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,