Article ID Journal Published Year Pages File Type
10235170 Process Biochemistry 2014 10 Pages PDF
Abstract
The primary plant cell wall is composed of cellulose, hemicellulose, lignin and protein in a stable matrix. The concomitant depolymerization of lignin by laccase and of hemicelluloses by xylanase can improve lignocellulose degradation in the production of second generation biofuels. A thermophilic variant of xylanase A (XynAG3) and the thermostable laccase (CotA), both from Bacillus subtilis, were produced in co-transformed Pichia pastoris strain GS115. Mobility changes in SDS-PAGE after Endo H digestion indicated that both enzymes were glycosylated. The maximum catalytic activity of the XynAG3Pp and the CotAPp was observed at 58 °C and 75 °C, respectively, and both enzymes presented high activity at pH 5.0. The half-life at 60 °C of XynAG3Pp and CotAPp was 150 min and 540 min, respectively. The relative levels of CotAPp and XynAG3Pp in culture broths were altered by the concentration of methanol used for induction, and CotAPp:XynAG3Pp ratios of 1:1.5 and 1:2 were evaluated against milled sugar-cane bagasse. The highest activity was observed at a 1:2 ratio of CotAPp:XynAG3Pp, and was 44% higher as compared to the sum of the activities of the individual enzymes in the same assay conditions. These results demonstrate the synergistic action between an endoxylanase and a laccase against the natural lignocellulosic substrate.
Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , , , , ,