Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10235342 | Process Biochemistry | 2015 | 7 Pages |
Abstract
The nutritional benefits and biological functions of diacylglycerols (DAGs) have attracted much attention regarding their synthesis. In this study, we improved the synthesis of diacid 1,3-DAGs by the enzymatic transesterification of 1-monoolein with a fatty acid vinyl ester as an acyl donor. First, 1-monoolein was prepared in 95% ethanol with Amberlyst resin as a catalyst by the cleavage of 1,2-acetonide-3-oleoylglycerol, which had been synthesized by enzymatic esterification of 1,2-acetonide glycerol with oleic acid. Second, purified 1-monoolein was reacted with vinyl palmitate in the presence of a lipase to obtain 1-oleoyl-3-palmitoylglycerol. Subsequently, the reaction conditions for the synthesis of diacid 1,3-DAGs were evaluated. Under the selected conditions, the crude mixture contained 90.6% pure 1-oleoyl-3-palmitoylglycerol. After purification by two-step crystallization, pure 1-oleoyl-3-palmitoylglycerol was obtained with a yield of 83.6%. The main innovations were the use of enzymatic transesterification to obtain highly purified diacid 1,3-DAGs instead of using chemical synthesis and the use of an irreversible reaction with a fatty acid vinyl ester as acyl donor rather than reversible reactions.
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Bioengineering
Authors
Xiaosan Wang, Jianhui Xiao, Wanzhen Zou, Zhengyang Han, Qingzhe Jin, Xingguo Wang,