Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10247982 | Microporous and Mesoporous Materials | 2005 | 7 Pages |
Abstract
This paper describes an application of a non-thermal, photochemical calcination process for an efficient and spatially controlled removal of the organic structure-directing agent in the preparation of thin films of microporous or zeolite materials. We prepared thin-films of a high silica zeolite (structure code: MFI) following a previously published procedure. The films were illuminated using an ozone generating short-wavelength ultraviolet light in ambient environments and characterized using Fourier-transform infrared spectroscopy, imaging ellipsometry, thin-film X-ray diffraction, and scanning electron microscopy. Results presented here indicate that the UV/ozone treatment under nominally room temperature conditions leads to complete removal of template (structure-directing-agent) from zeolite films comparable to that achieved by thermal calcination. Furthermore, spatially addressing the UV/ozone illumination pattern using a physical mask resulted in the lateral confinement of the template removal from the zeolite film leaving behind a composite film composed of templated and template-free regions. Subsequent chemical treatment of the patterned film selectively removed the as-synthesized, unexposed, regions of the film thereby providing a means for the creation of isolated zeolite film islands at predetermined locations on the substrate surface.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Catalysis
Authors
Qinghua Li, Meri L. Amweg, Chanel K. Yee, Alexandra Navrotsky, Atul N. Parikh,