Article ID Journal Published Year Pages File Type
10267 Biomaterials 2008 10 Pages PDF
Abstract

Ocular trauma and disorders that lead to corneal blindness account for over 2 million new cases of monocular blindness every year. A popular ocular surface reconstruction therapy, amniotic membrane transplantation, has been shown to aid corneal wound repair. However, the success rates of the procedure are variable. Here, we proposed to bioengineer a novel synthetic material that would serve as a biomimetic corneal bandage. The PLGA–PEG–PLGA triblock copolymer was synthesised via ring-opening polymerisation. Thermoreversible gelation behaviour was investigated at different polymer concentrations (23%, 30%, 35%, 40%, 45%, w/v) at temperatures ranging between 5 and 60 °C. Viscoelastic properties were studied in dynamic mechanical analysis with 1 °C/min temperature ramp. Cryo-SEM revealed a porous hydrogel with interconnecting networks. No adverse cytotoxicity was observed with an in vitro scratch-wound assay and in in vivo biocompatibility tests. We have demonstrated that the PLGA–PEG–PLGA hydrogel possessed a suitable gelling profile and, for the first time, the biocompatibility properties for this application as a potential bandage for corneal wound repair.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , , , ,