Article ID Journal Published Year Pages File Type
10267077 Electrochemistry Communications 2005 4 Pages PDF
Abstract
Carbon corrosion that is presumed to occur at the proton exchange membrane fuel cell (PEMFC) cathode was visualized by atomic force microscopy (AFM) and field emission-scanning electron microscopy (FE-SEM) observations using a fundamental model electrode. Platinum nanoparticles were deposited on a highly oriented pyrolytic graphite (HOPG) substrate as a model cathode catalyst, and its stability in an acid solution at a fixed potential was investigated. The formation of blisters on the surface of the model electrode was observed by AFM after it was kept at 1.0 V vs. RHE, especially at and around the Pt particles. FE-SEM observations using a backscattered electron detector revealed that Pt particles remained unchanged at their original positions after the formation of blisters.
Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,