Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10267302 | Electrochemistry Communications | 2005 | 6 Pages |
Abstract
Novel spinel Li4Ti5O12 with nanotubes/nanowires morphology and high surface area has been prepared by a low temperature hydrothermal lithium ion exchange processing from hydrogen titanate nanotubes/nanowires precursors. The shape and morphology of spinel Li4Ti5O12 are controllable by varying the hydrogen titanate precursors (nanotube, nanowire, nanorod and nanobelt) from alkaline-hydrothermal approach. The crystal structure and morphology of the as-prepared lithium titanate nanotubes/nanowires have been investigated by TEM, HRTEM and XRD, respectively. The formation temperature of spinel Li4Ti5O12 nanotubes/nanowires is lower than that of bulk materials counterpart prepared by solid-state reaction or by sol-gel processing. The well reversible cyclic voltammetric results of both electrodes indicate enhanced electrochemical kinetics for lithium insertion. These novel one-dimensional nanostructured materials may find promising applications in lithium ion batteries and electrochemical cells.
Keywords
Related Topics
Physical Sciences and Engineering
Chemical Engineering
Chemical Engineering (General)
Authors
Junrong Li, Zilong Tang, Zhongtai Zhang,