Article ID Journal Published Year Pages File Type
10282075 Applied Energy 2005 12 Pages PDF
Abstract
The performance of a generalized irreversible reciprocating heat-engine cycle model consisting of two heating branches, two cooling branches and two adiabatic branches with heat-transfer loss and friction-like term loss was analyzed using finite-time thermodynamics. The relations between the power output and the compression ratio, between the thermal efficiency and the compression ratio, as well as the optimal relation between the power output and the efficiency of the cycle are derived. Moreover, analysis and optimization of the model were carried out in order to investigate the effect of the cycle process on the performances of the cycles using numerical examples. The results obtained herein include the performance characteristics of irreversible reciprocating Diesel, Otto, Atkinson, Brayton, Dual and Miller cycles.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,