Article ID Journal Published Year Pages File Type
10300 Biomaterials 2009 8 Pages PDF
Abstract

We report the preparation of an embolic agent based on specific association of an acrylic copolymer with dedicated particles formulated in ethanol. The copolymers were synthesized by radical polymerization of tertiobutylacrylamide (tBA) and 2-hydroxypropyl methacrylate (HPMA). Influences of the monomers composition, molecular weight and copolymer concentration have been evaluated on an in vitro model. Introduction of tBA units improves significantly the occlusion properties but these properties are similar whatever the molecular weight of the copolymer. As observed by viscosity studies, it seems necessary to work with a relatively high polymer concentration (C > Ce) to form a cohesive embolus. Addition of solid particles composed by a crosslinked polymer of 2-hydroxyethyl methacrylate (HEMA) and N-trishydroxymethyl methacrylamide (TRIS) in the acrylic copolymer solution has allowed to obtain an embole having an enhanced cohesion and giving a more compact structure. An in vivo evaluation has been performed by injection of this embolic agent in intercostal arteries and renal artery of sheep. There was no fragmentation of the plug during and after injection and a complete arterial occlusion by a cohesive embole. The pathological examination confirmed that there was a complete arterial occlusion by the plug and that the dedicated particles were as expected embedded in the precipitate acrylic copolymer.

Related Topics
Physical Sciences and Engineering Chemical Engineering Bioengineering
Authors
, , , , , , ,