Article ID Journal Published Year Pages File Type
10321935 Expert Systems with Applications 2015 15 Pages PDF
Abstract
Classification of short text is challenging due to data sparseness, which is a typical characteristic of short text. In this paper, we propose methods for enhancing features using topic models, which make short text seem less sparse and more topic-oriented for classification. We exploited topic model analysis based on Latent Dirichlet Allocation for enriched datasets, and then we presented new methods for enhancing features by combining external texts from topic models that make documents more effective for classification. In experiments, we utilized the title contents of scientific articles as short text documents, and then enriched these documents using topic models from various types of universal datasets for classification in order to show that our approach performs efficiently.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,