Article ID Journal Published Year Pages File Type
10321977 Expert Systems with Applications 2013 11 Pages PDF
Abstract
This paper presents a heavy-tailed mixture model for describing time-varying conditional distributions in time series of returns on prices. Student-t component distributions are taken to capture the heavy tails typically encountered in such financial data. We design a mixture MT(m)-GARCH(p, q) volatility model for returns, and develop an EM algorithm for maximum likelihood estimation of its parameters. This includes formulation of proper temporal derivatives for the volatility parameters. The experiments with a low order MT(2)-GARCH(1, 1) show that it yields results with improved statistical characteristics and economic performance compared to linear and nonlinear heavy-tail GARCH, as well as normal mixture GARCH. We demonstrate that our model leads to reliable Value-at-Risk performance in short and long trading positions across different confidence levels.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , ,