Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10322166 | Expert Systems with Applications | 2015 | 13 Pages |
Abstract
Recently, new emerging applications, such as web click-stream mining, failure forecast and traffic analysis, introduced a new challenging data model referred to as data streams. Mining such data can reveal up-to-date patterns, which are useful for predicting future events. Consequently, pattern mining in data streams is a popular field in data mining that presents unique challenges. The data is large and endlessly keeps on coming, making it impossible to store it, or to re-analyse historical data once it has been discarded. To solve this, we first present a novel method for mining sequential patterns from a data stream, in which we maximise memory usage in order to achieve higher accuracy in terms of results. In a second step, we use the discovered patterns in order to try to predict future events. We propose a number of ways to assign a score to each pattern in order to generate predictions. The prediction performance of these scoring strategies is then extensively experimentally evaluated. The predictor offers an opportunity for a faster detection and response to an important, though perhaps unexpected, event, which will occur in the future.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Artificial Intelligence
Authors
Cheng Zhou, Boris Cule, Bart Goethals,