Article ID Journal Published Year Pages File Type
10325595 Journal of Symbolic Computation 2005 23 Pages PDF
Abstract
Algebraic function fields of positive characteristic are non-perfect fields, and many standard algorithms for solving some fundamental problems in commutative algebra simply do not work over these fields. This paper presents practical algorithms for the first time for (1) computing the primary decomposition of ideals of polynomial rings defined over such fields and (2) factoring arbitrary multivariate polynomials over such fields. Difficulties involving inseparability and the situation where the transcendence degree is greater than one are completely overcome, while the algorithms avoid explicit construction of any extension of the input base field. As a corollary, the problem of computing the primary decomposition of a positive-dimensional ideal over a finite field is also solved. The algorithms perform very effectively in an implementation within the Magma Computer Algebra System, and an analysis of their practical performance is given.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,