Article ID Journal Published Year Pages File Type
10325756 Journal of Symbolic Computation 2005 27 Pages PDF
Abstract
This paper extends the theory of the Gröbner fan and Gröbner walk for ideals in polynomial rings to the case of submodules of free modules over a polynomial ring. The Gröbner fan for a submodule creates a correspondence between a pair consisting of a cone in the fan and a point in the support of the cone and a pair consisting of a leading monomial submodule (or equivalently, a reduced marked Gröbner basis) and a grading of the free module over the ring that is compatible with the choice of leading monomials. The Gröbner walk is an algorithm based on the Gröbner fan that converts a given Gröbner basis to a Gröbner basis with respect to a different monomial order; the point being that the Gröbner walk can be more efficient than the standard algorithms for Gröbner basis computations with difficult monomial orders. Algorithms for generating the Gröbner fan and for the Gröbner walk are given.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
,