Article ID Journal Published Year Pages File Type
10325830 Journal of Symbolic Computation 2012 18 Pages PDF
Abstract
A Steiner surface is a quadratically parameterizable surface without base points. To make Steiner surfaces more applicable in Computer Aided Geometric Design and Geometric Modeling, this paper discusses implicitization, parameterization and singularity computation of Steiner surfaces using the moving surface technique. For implicitization, we prove that there exist two linearly independent moving planes with total degree one in the parametric variables. From this fact, the implicit equation of a Steiner surface can be expressed as a 3×3 determinant. The inversion formula and singularities for the Steiner surface can also be easily computed from the moving planes. For parameterization, we first compute the singularities of a Steiner surface in implicit form. Based on the singularities, we can find some special moving planes, from which a quadratic parameterization of the Steiner surface can be retrieved.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, ,