Article ID Journal Published Year Pages File Type
10326824 Robotics and Autonomous Systems 2015 19 Pages PDF
Abstract
In this paper, we present a newly developed iterative contact point estimation method for static stability estimation of actively reconfigurable robots. This new method is systematically compared to a physics simulation in a comprehensive evaluation. Both interaction models determine the contact points between robot and terrain and facilitate a subsequent static stability prediction. Hence, they can be used in our state space global planner for rough terrain to evaluate the robot's pose and stability. The analysis also compares deterministic versions of both methods to stochastic versions which account for uncertainty in the robot configuration and the terrain model. The results of this analysis show that the new iterative method is a valid and fast approximate method. It is significantly faster compared to a physics simulation while providing good results in realistic robotic scenarios.
Related Topics
Physical Sciences and Engineering Computer Science Artificial Intelligence
Authors
, , , ,