Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10327518 | Computational Statistics & Data Analysis | 2013 | 13 Pages |
Abstract
This paper concerns the analysis of discrete-valued time series using a class of categorical ARMA models recently proposed by Biswas and Song (2009). Such ARMA processes are flexible to model discrete-valued time series, allowing a wide range of marginal distributions such as binomial, multinomial, Poisson and nominal/ordinal categorical probability mass functions. To apply these models in the data analysis this paper focuses on the development of a needed statistical toolbox, which includes maximum likelihood estimation and inference, model selection, and goodness-of-fit test. Particularly in AR models a bias-corrected AIC statistic is derived for the order selection, while a randomized conditional moment (RCM) test is furnished to examine the goodness-of-fit. Finite-sample performances of the proposed methods are examined through simulation studies, in which the bias-corrected AIC is shown to outperform the traditional AIC and BIC statistics and the RCM test achieves desirable power. As part of the numeric illustration, a data analysis of categorical time series on infant sleep quality is provided by the application of this new toolbox.
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
Peter X.-K. Song, R. Keith Freeland, Atanu Biswas, Shulin Zhang,