Article ID Journal Published Year Pages File Type
10328700 Discrete Applied Mathematics 2005 14 Pages PDF
Abstract
The knight's tour problem is an ancient puzzle whose goal is to find out how to construct a series of legal moves made by a knight so that it visits every square of a chessboard exactly once. In previous works, researchers have partially solved this problem by offering algorithms for subsets of chessboards. For example, among prior studies, Parberry proposed a divided-and-conquer algorithm that can build a closed knight's tour on an n×n, an n×(n+1) or an n×(n+2) chessboard in O(n2) (i.e., linear in area) time on a sequential processor. In this paper we completely solve this problem by presenting new methods that can construct a closed knight's tour or an open knight's tour on an arbitrary n×m chessboard if such a solution exists. Our algorithms also run in linear time (O(nm)) on a sequential processor.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,