Article ID Journal Published Year Pages File Type
10331863 Information Processing Letters 2015 5 Pages PDF
Abstract
We study the complexity of detecting monomials with special properties in the sum-product expansion of a polynomial represented by an arithmetic circuit of size polynomial in the number of input variables and using only multiplication and addition. We focus on monomial properties expressed in terms of the number of distinct variables occurring in a monomial. Our first result is a randomized FPT algorithm for detection of a monomial having at least k distinct variables, parametrized with respect to k. For a more restricted class of circuits, we can also provide a deterministic FPT algorithm for detection of a monomial having at most k distinct variables parametrized by the degree of the polynomial represented by the input circuit. Furthermore, we derive several hardness results on detection of monomials with such properties within exact, parametrized and approximation complexity. In particular, we observe that the detection of a monomial having at most k distinct variables is W[2]-hard for the parameter k.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , ,