Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10331934 | Information Processing Letters | 2005 | 8 Pages |
Abstract
In a visibility representation (VR for short) of a plane graph G, each vertex of G is represented by a horizontal line segment such that the line segments representing any two adjacent vertices of G are joined by a vertical line segment. Rosenstiehl and Tarjan [Rectilinear planar layouts and bipolar orientations of planar graphs, Discrete Comput. Geom. 1 (1986) 343], Tamassia and Tollis [An unified approach to visibility representations of planar graphs, Discrete Comput. Geom. 1 (1986) 321] independently gave linear time VR algorithms for 2-connected plane graph. Afterwards, one of the main concerns for VR is the size of the representation. In this paper, we prove that any plane graph G has a VR with height bounded by â5n6â. This improves the previously known bound â15n16â. We also construct a plane graph G with n vertices where any VR of G requires a size of (â2n3â)Ã(â4n3ââ3). Our result provides an answer to Kant's open question about whether there exists a plane graph G such that all of its VR require width greater that cn, where c>1 [G. Kant, A more compact visibility representation, Internat. J. Comput. Geom. Appl. 7 (1997) 197].
Related Topics
Physical Sciences and Engineering
Computer Science
Computational Theory and Mathematics
Authors
Huaming Zhang, Xin He,