Article ID Journal Published Year Pages File Type
10332137 Information Processing Letters 2005 8 Pages PDF
Abstract
This work concisely reviews and unifies the analysis of different variants of neural associative networks consisting of binary neurons and synapses (Willshaw model). We compute storage capacity, fault tolerance, and retrieval efficiency and point out problems of the classical Willshaw model such as limited fault tolerance and restriction to logarithmically sparse random patterns. Then we suggest possible solutions employing spiking neurons, compression of the memory structures, and additional cell layers. Finally, we discuss from a technical perspective whether distributed neural associative memories have any practical advantage over localized storage, e.g., in compressed look-up tables.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
,