Article ID Journal Published Year Pages File Type
10332827 Journal of Computational Science 2014 11 Pages PDF
Abstract
We present the open source Lattice Boltzmann solver Musubi. It is part of the parallel simulation framework APES, which utilizes octrees to represent sparse meshes and provides tools from automatic mesh generation to post-processing. The octree mesh representation enables the handling of arbitrarily complex simulation domains, even on massively parallel systems. Local grid refinement is implemented by several interpolation schemes in Musubi. Various kernels provide different physical models based on stream-collide algorithms. These models can be computed concurrently and can be coupled with each other. This paper explains our approach to provide a flexible yet scalable simulation environment and elaborates its design principles and implementation details. The efficiency of our approach is demonstrated with a performance evaluation on two supercomputers and a comparison to the widely used Lattice Boltzmann solver Palabos.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , , , ,