Article ID Journal Published Year Pages File Type
10333873 Theoretical Computer Science 2016 22 Pages PDF
Abstract
DNA sequencing is the process of determining the exact order of the nucleotide bases of an individual's genome in order to catalogue sequence variation and understand its biological implications. Whole-genome sequencing techniques produce masses of data in the form of short sequences known as reads. Assembling these reads into a whole genome constitutes a major algorithmic challenge. Most assembly algorithms utilise de Bruijn graphs constructed from reads for this purpose. A critical step of these algorithms is to detect typical motif structures in the graph caused by sequencing errors and genome repeats, and filter them out; one such complex subgraph class is a so-called superbubble. In this paper, we propose an O(n+m)-time algorithm to detect all superbubbles in a directed acyclic graph with n vertices and m (directed) edges, improving the best-known O(mlog⁡m)-time algorithm by Sung et al.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , , , , ,