Article ID Journal Published Year Pages File Type
10333923 Theoretical Computer Science 2011 11 Pages PDF
Abstract
The matching preclusion problem, introduced by Brigham et al. [R.C. Brigham, F. Harary, E.C. Violin, and J. Yellen, Perfect-matching preclusion, Congressus Numerantium 174 (2005) 185-192], studies how to effectively make a graph have neither perfect matchings nor almost perfect matchings by deleting as small a number of edges as possible. Extending this concept, we consider a more general matching preclusion problem, called the strong matching preclusion, in which deletion of vertices is additionally permitted. We establish the strong matching preclusion number and all possible minimum strong matching preclusion sets for various classes of graphs.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, ,