Article ID Journal Published Year Pages File Type
10333942 Theoretical Computer Science 2011 15 Pages PDF
Abstract
Shuhong Gao (2003) [6] has proposed an efficient algorithm to factor a bivariate polynomial f over a field F. This algorithm is based on a simple partial differential equation and depends on a crucial fact: the dimension of the polynomial solution space G associated with this differential equation is equal to the number r of absolutely irreducible factors of f. However, this holds only when the characteristic of F is either zero or sufficiently large in terms of the degree of f. In this paper we characterize a vector subspace of G for which the dimension is r, regardless of the characteristic of F, and the properties of Gao's construction hold. Moreover, we identify a second vector subspace of G that leads to an analogous theory for the rational factorization of f.
Related Topics
Physical Sciences and Engineering Computer Science Computational Theory and Mathematics
Authors
, , ,