Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10340041 | Computer Networks | 2012 | 12 Pages |
Abstract
In this paper, we re-formulate the NP-complete EMN problem into a simpler one using a newly defined concept called 'traffic centrality'. We then propose a new ant colony-based self-adaptive energy saving routing scheme, referred to as A-ESR, which exploits the ant colony optimization (ACO) method to make the Internet more energy efficient. The proposed A-ESR algorithm heuristically solves the re-formulated problem without any supervised control by allowing the incoming flows to be autonomously aggregated on specific heavily-loaded links and switching off the other lightly-loaded links. Additionally, the A-ESR algorithm adjusts the energy consumption by tuning the aggregation parameter β, which can dramatically reduce the energy consumption during nighttime hours (at the expense of tolerable network delay performance). Another promising capability of this algorithm is that it provides a high degree of self-organizing capabilities due to the amazing advantages of the swarm intelligence of artificial ants. The simulation results in real IP networks show that the proposed A-ESR algorithm performs better than previous algorithms in terms of its energy efficiency. The results also show that this efficiency can be adjusted by tuning β.
Keywords
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Networks and Communications
Authors
Young-Min Kim, Eun-Jung Lee, Hea-Sook Park, Jun-Kyun Choi, Hong-Shik Park,