Article ID Journal Published Year Pages File Type
10343204 Microprocessors and Microsystems 2005 13 Pages PDF
Abstract
In this paper we present a platform for evolving spiking neural networks on FPGAs. Embedded intelligent applications require both high performance, so as to exhibit real-time behavior, and flexibility, to cope with the adaptivity requirements. While hardware solutions offer performance, and software solutions offer flexibility, reconfigurable computing arises between these two types of solutions providing a trade-off between flexibility and performance. Our platform is described as a combination of three parts: a hardware substrate, a computing engine, and an adaptation mechanism. We present, also, results about the performance and synthesis of the neural network implementation on an FPGA.
Related Topics
Physical Sciences and Engineering Computer Science Computer Networks and Communications
Authors
, , ,