Article ID Journal Published Year Pages File Type
10344609 Computer Methods and Programs in Biomedicine 2012 16 Pages PDF
Abstract
Disease diagnosis based on ultrasound imaging is popular because of its non-invasive nature. However, ultrasound imaging system produces low quality images due to the presence of spackle noise and wave interferences. This shortcoming requires a considerable effort from experts to diagnose a disease from the carotid artery ultrasound images. Image segmentation is one of the techniques, which can help efficiently in diagnosing a disease from the carotid artery ultrasound images. Most of the pixels in an image are highly correlated. Considering the spatial information of surrounding pixels in the process of image segmentation may further improve the results. When data is highly correlated, one pixel may belong to more than one clusters with different degree of membership. In this paper, we present an image segmentation technique namely improved spatial fuzzy c-means and an ensemble clustering approach for carotid artery ultrasound images to identify the presence of plaque. Spatial, wavelets and gray level co-occurrence matrix (GLCM) features are extracted from carotid artery ultrasound images. Redundant and less important features are removed from the features set using genetic search process. Finally, segmentation process is performed on optimal or reduced features. Ensemble clustering with reduced feature set outperforms with respect to segmentation time as well as clustering accuracy. Intima-media thickness (IMT) is measured from the images segmented by the proposed approach. Based on IMT measured values, Multi-Layer Back-Propagation Neural Networks (MLBPNN) is used to classify the images into normal or abnormal. Experimental results show the learning capability of MLBPNN classifier and validate the effectiveness of our proposed technique. The proposed approach of segmentation and classification of carotid artery ultrasound images seems to be very useful for detection of plaque in carotid artery.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,