Article ID Journal Published Year Pages File Type
10345404 Computer Methods and Programs in Biomedicine 2013 13 Pages PDF
Abstract
The cure fraction models are usually used to model lifetime time data with long-term survivors. In the present article, we introduce a Bayesian analysis of the four-parameter generalized modified Weibull (GMW) distribution in presence of cure fraction, censored data and covariates. In order to include the proportion of “cured” patients, mixture and non-mixture formulation models are considered. To demonstrate the ability of using this model in the analysis of real data, we consider an application to data from patients with gastric adenocarcinoma. Inferences are obtained by using MCMC (Markov Chain Monte Carlo) methods.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,