Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10345431 | Computer Methods and Programs in Biomedicine | 2013 | 10 Pages |
Abstract
Melanoma is a type of malignant melanocytic skin lesion, and it is among the most life threatening existing cancers if not treated at an early stage. Computer-aided prescreening systems for melanocytic skin lesions is a recent trend to detect malignant melanocytic skin lesions in their early stages, and lesion segmentation is an important initial processing step. A good definition of the lesion area and its border is very important for discriminating between benign and malignant cases. In this paper, we propose to segment melanocytic skin lesions using a sequence of steps. We start by pre-segmenting the skin lesion, creating a new image representation (channel) where the lesion features are more evident. This new channel is thresholded, and the lesion border pre-detection is refined using an active-contours algorithm followed by morphological operations. Our experimental results based on a publicly available dataset suggest that our method potentially can be more accurate than comparable state-of-the-art methods proposed in literature.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science (General)
Authors
Pablo G. Cavalcanti, Jacob Scharcanski,