Article ID Journal Published Year Pages File Type
10347164 Computers & Operations Research 2012 12 Pages PDF
Abstract
This paper addresses a two-agent scheduling problem on a single machine with arbitrary release dates, where the objective is to minimize the tardiness of one agent, while keeping the lateness of the other agent below or at a fixed level Q. A mixed integer programming model is first presented for its optimal solution, admittedly not to be practical or useful in the most cases, but theoretically interesting since it models the problem. Thus, as an alternative, a branch-and-bound algorithm incorporating with several dominance properties and a lower bound is provided to derive the optimal solution and a marriage in honey-bees optimization algorithm (MBO) is developed to derive the near-optimal solutions for the problem. Computational results are also presented to evaluate the performance of the proposed algorithms.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science (General)
Authors
, , , ,