Article ID Journal Published Year Pages File Type
10351154 Computerized Medical Imaging and Graphics 2014 14 Pages PDF
Abstract
Classification plays a critical role in false positive reduction (FPR) in lung nodule computer aided detection (CAD). The difficulty of FPR lies in the variation of the appearances of the nodules, and the imbalance distribution between the nodule and non-nodule class. Moreover, the presence of inherent complex structures in data distribution, such as within-class imbalance and high-dimensionality are other critical factors of decreasing classification performance. To solve these challenges, we proposed a hybrid probabilistic sampling combined with diverse random subspace ensemble. Experimental results demonstrate the effectiveness of the proposed method in terms of geometric mean (G-mean) and area under the ROC curve (AUC) compared with commonly used methods.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , , ,