Article ID Journal Published Year Pages File Type
10351213 Computerized Medical Imaging and Graphics 2005 5 Pages PDF
Abstract
Balanced steady-state free precession (SSFP) magnetic resonance (MR) imaging is feasible for cine cardiac images because of the high contrast between myocardium and blood pool and robustness to rapid blood flow. Nonetheless, the flow artifacts are often observed because of off-resonance effects and to in-flow effects of the blood flow. Although reshimming the gradients or readjusting the center frequency reduces the artifacts, the technique can be susceptible for respiratory and cardiac motion and operator-dependent. The purpose of this study is to use another MR imaging technique for the reduction in the flow artifacts in the heart: odd-even interleaved data acquisition in segmented balanced SSFP imaging. The flow artifacts in the ventricle, ghost outside the heart, and visualization of the myocardial border were visually compared between sequential and odd-even interleaved k-space data acquisitions in cine balanced SSFP cardiac MR imaging. The odd-even interleaved k-space data acquisition significantly reduced dark flow artifacts in the left ventricle, improved the visualization of the myocardial border, and was easily installed. This imaging technique should be applied to cine segmented balanced SSFP cardiac MR imaging.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,