Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10351482 | Computers in Biology and Medicine | 2013 | 10 Pages |
Abstract
Mitochondrial protein of Plasmodium falciparum is an important target for anti-malarial drugs. Experimental approaches for detecting mitochondrial proteins are costly and time consuming. Therefore, MitProt-Pred is developed that utilizes Bi-profile Bayes, Pseudo Average Chemical Shift, Split Amino Acid Composition, and Pseudo Amino Acid Composition based features of the protein sequences. Hybrid feature space is also developed by combining different individual feature spaces. These feature spaces are learned and exploited through SVM based ensemble. MitProt-Pred achieved significantly improved prediction performance for two standard datasets. We also developed the score level ensemble, which outperforms the feature level ensemble.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Muhammad Tayyeb Mirza, Asifullah Khan, Muhammad Tahir, Yeon Soo Lee,