Article ID Journal Published Year Pages File Type
10351621 Computers in Biology and Medicine 2011 10 Pages PDF
Abstract
Heart murmurs are pathological sounds produced by turbulent blood flow due to certain cardiac defects such as valves disorders. Detection of murmurs via auscultation is a task that depends on the proficiency of physician. There are many cases in which the accuracy of detection is questionable. The purpose of this study is development of a new mathematical model of systolic murmurs to extract their crucial features for identifying the heart diseases. A high resolution algorithm, multivariate matching pursuit, was used to model the murmurs by decomposing them into a series of parametric time-frequency atoms. Then, a novel model-based feature extraction method which uses the model parameters was performed to identify the cardiac sound signals. The proposed framework was applied to a database of 70 heart sound signals containing 35 normal and 35 abnormal samples. We achieved 92.5% accuracy in distinguishing subjects with valvular diseases using a MLP classifier, as compared to the matching pursuit-based features with an accuracy of 77.5%.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, ,