Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10351621 | Computers in Biology and Medicine | 2011 | 10 Pages |
Abstract
Heart murmurs are pathological sounds produced by turbulent blood flow due to certain cardiac defects such as valves disorders. Detection of murmurs via auscultation is a task that depends on the proficiency of physician. There are many cases in which the accuracy of detection is questionable. The purpose of this study is development of a new mathematical model of systolic murmurs to extract their crucial features for identifying the heart diseases. A high resolution algorithm, multivariate matching pursuit, was used to model the murmurs by decomposing them into a series of parametric time-frequency atoms. Then, a novel model-based feature extraction method which uses the model parameters was performed to identify the cardiac sound signals. The proposed framework was applied to a database of 70 heart sound signals containing 35 normal and 35 abnormal samples. We achieved 92.5% accuracy in distinguishing subjects with valvular diseases using a MLP classifier, as compared to the matching pursuit-based features with an accuracy of 77.5%.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Sepideh Jabbari, Hassan Ghassemian,