Article ID Journal Published Year Pages File Type
10352420 Computers & Geosciences 2005 10 Pages PDF
Abstract
An approach based on continuous biofilm models is proposed for modeling permeability changes due to mineral precipitation and dissolution in saturated porous media. In contrast to the biofilm approach, implementation of the film depositional models within a reactive transport code requires a time-dependent calculation of the mineral films in the pore space. Two different methods for this calculation are investigated. The first method assumes a direct relationship between changes in mineral radii (i.e., surface area) and changes in the pore space. In the second method, an effective change in pore radii is calculated based on the relationship between permeability and grain size. Porous media permeability is determined by coupling the film permeability models (Mualem and Childs and Collis-George) to a volumetric model that incorporates both mineral density and reactive surface area. Results from single mineral dissolution and single mineral precipitation simulations provide reasonable estimates of permeability, though they predict smaller permeability changes relative to the Kozeny and Carmen model. However, a comparison of experimental and simulated data show that the Mualem film model is the only one that can replicate the oscillations in permeability that occur as a result of simultaneous dissolution and precipitation reactions occurring within the porous media.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , , ,