Article ID Journal Published Year Pages File Type
10354032 Engineering Analysis with Boundary Elements 2005 8 Pages PDF
Abstract
A static mixed boundary value problem (BVP) of physically nonlinear elasticity for a continuously inhomogeneous body is considered. Using the two-operator Green-Betti formula and the fundamental solution of an auxiliary linear operator, a non-standard boundary-domain integro-differential formulation of the problem is presented, with respect to the displacements and their gradients. Using a cut-off function approach, the corresponding localized parametrix is constructed to reduce the nonlinear BVP to a nonlinear localized boundary-domain integro-differential equation. Algorithms of mesh-based and mesh-less discretizations are presented resulting in sparsely populated systems of nonlinear algebraic equations.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
,