Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10354262 | Engineering Analysis with Boundary Elements | 2005 | 14 Pages |
Abstract
A two-dimensional (2D) time-domain boundary element method (BEM) is presented in this paper for transient analysis of elastic wave scattering by a crack in homogeneous, anisotropic and linearly elastic solids. A traction boundary integral equation formulation is applied to solve the arising initial-boundary value problem. A numerical solution procedure is developed to solve the time-domain boundary integral equations. A collocation method is used for the temporal discretization, while a Galerkin-method is adopted for the spatial discretization of the boundary integral equations. Since the hypersingular boundary integral equations are first regularized to weakly singular ones, no special integration technique is needed in the present method. Special attention of the analysis is devoted to the computation of the scattered wave fields. Numerical examples are given to show the accuracy and the reliability of the present time-domain BEM. The effects of the material anisotropy on the transient wave scattering characteristics are investigated.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
A. Tan, S. Hirose, Ch. Zhang, C.-Y. Wang,