Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
10356301 | Journal of Computational Physics | 2011 | 23 Pages |
Abstract
FF-CSLAM was found to be third-order accurate when an appropriately smooth initial mass distribution and flow field (with at least a continuous second derivative) was used. This was true even when using highly deformational flows and when the distribution is advected over the singularities in the cubed sphere, the latter a consequence of the full two-dimensionality of the method. Flux-limited monotonicity preservation, which is only available in a flux-form method, was found to be both less diffusive and more efficient than the monotone reconstruction filtering available to CSLAM. Despite the additional overhead of computing fluxes compared to CSLAM's cell integrations, the non-monotone FF-CSLAM was found to be at most only 40% slower than CSLAM for Courant numbers less than one, with greater overhead for successively larger Courant numbers.
Related Topics
Physical Sciences and Engineering
Computer Science
Computer Science Applications
Authors
Lucas M. Harris, Peter H. Lauritzen, Rashmi Mittal,