Article ID Journal Published Year Pages File Type
10356333 Journal of Computational Physics 2011 18 Pages PDF
Abstract
We implement the theory to form a 2-D non-hydrostatic compressible (Euler system) atmospheric model in which standard test cases confirm accuracy and stability. We maintain stability with time steps larger than CFL = 1 (CFL number determined by the acoustic wave speed, not advection) but note that accuracy degrades unacceptably for most cases with CFL > 2. For the smoothest test case, we ran out to CFL = 7 to investigate the error associated with simulation at large CFL number time steps. Analysis suggests improvement of trajectory computations will improve error for large CFL numbers.
Related Topics
Physical Sciences and Engineering Computer Science Computer Science Applications
Authors
, , ,